Skip to Main Content U.S. Department of Energy
Center for Molecular Electrocatalysis - Energy Frontiers Research Center

Tackling Our Energy Challenges in a New Era of Science

Latest Announcements

Artistic representation of catalysis research and applications

Catalyze It! Special Issue Highlights Drive for Discoveries at National Labs

(May  2016)

Researchers at Pacific Northwest National Laboratory and ten other labs had their work featured in a special issue of ACS Catalysis. Their efforts have clarified basic scientific principles, funded by DOE's Office of Science, and have resolved issues for biofuels, emission control, fuel cells, and more, funded by DOE's Office of Energy Efficiency and Renewable Energy. The peer-reviewed online publication features ten articles by PNNL scientists and their university collaborators.



Catalytic efficiency vs cost

Five Cents About Nickel Catalysts

Computational methods and experimental techniques reveal important design principles for future nickel catalysts

(May  2016)

Platinum is a good catalyst, but it costs ~$950 an ounce. Nickel, whose market price of less than $4 a pound, is an attractive option, but it doesn’t pack the same punch. Two Energy Frontier Research Centers are helping nickel muscle its way to center stage of fuel production. Read more in this article which first appeared in Frontiers in Energy Research.



Four reactions on gold background

Measuring Up: The Gold Standard for Catalysts in Real World Conditions

Combining 4 well-known reactions precisely predicts how well a catalyst performs

(April  2016)

High efficiency is the goal when using renewable energy to split water into hydrogen (a fuel) and oxygen. Catalysts are the workhorses that accomplish this conversion, but in some cases, scientists haven't had an easy way to know if a catalyst is living up to its potential. Methods are well established for calculating that potential when the catalyst is in water, but not when in other solvents. Scientists have found a way to bridge this gap. With just four reactions, the team showed how much energy each catalyst could use if it worked perfectly. This work was done through the Center for Molecular Electrocatalysis, an Energy Frontier Research Center.



Chromium catalyzes reaction

Chromium Breaks the Toughest of Bonds, with the Right Support

Phosphorus atoms help drive metal to form ammonia, adding insights to turning renewable energy to fuel

(March  2016)

At the Center for Molecular Electrocatalysis, scientists showed what it takes to make long-overlooked chromium help form ammonia; this work is a critical step in controlling a reaction that could store electrons from intermittent wind and solar stations in use-any-time fuels.



Artistic representation of rotor in NMR

Teaching Reactions How to Navigate

New topographical map shows the energy hills and valleys involved in turning electrons into fuel

(November  2015)

When starting out on a new adventure, it helps to have a map, allowing you to determine how to best spend your time and energy along the way. The same is true for chemical reactions. Without understanding the steps involved, reactions can end up on energy-wasting backroads or creating toxic wastes. Unfortunately, few reaction maps exist because of the expertise needed to chart all the possible paths. At Pacific Northwest National Laboratory, scientists mapped areaction that turns wind-generated electricity into fuel and the amount of energy needed for each step.



Windmills

Shoving Protons Around

Review highlights molecular-level work involved in creating a design guide for catalysts for use of sustainable energy

(September  2015)

In an invited review of research by the Center for Molecular Electrocatalysis, Dr. Morris Bullock and Dr. Monte Helm at Pacific Northwest National Laboratory showed how shoving protons can enable iron and nickel to replace platinum in catalysts, providing a less expensive and more readily available base for sustainable storage of renewable energy.



Artistic representation of two metal-free catalysts

Two Great Catalysts that Work Great Together

Researchers use materials free of precious metals to speed the troubling side of the fuel cell reaction

(August  2015)

Replacing technologies that use fossil fuel with ones that use rare metals -- that's part of the problem for fuel cells. The cells use hydrogen generated at solar and wind stations to produce electricity. But, the cells require platinum to speed the reactions. Scientists at the Center for Molecular Electrocatalysis, led by Pacific Northwest National Laboratory, have found another way. By combining two simple, inexpensive, metal-free catalysts, they sped the cell's slower reaction.



Model of a zeolite

Energy in Chemical Bonds and the Plant-Pollution Connection

PNNL scientists share fundamental insights in energy and atmospheric science at ACS National Meeting

(August  2015)

Researchers from the Department of Energy's Pacific Northwest National Laboratory will be honored and present new work at the 250th American Chemical Society national meeting in Boston, Massachusetts, Aug. 16-20.



Wind energy

How to Store Sunlight on a Tight Energy Budget: Add More Protons

The reaction to convert solar energy to fuel is 50 times faster with a simple change in the solvent used

(August  2015)

For catalysts, the environment matters. Packing in protons and water lets a hydrogen-producing catalyst work 50 times faster than the previous record holder, according to scientists at the Center for Molecular Electrocatalysis, which is led by Pacific Northwest National Laboratory. This discovery provides another page to the design guidelines for super-fast catalysts to turn intermittent sunlight into fuels.



Wendy Shaw and Monte Helm

Researchers Ace Hydrogenase at PNNL-Led Workshop

(August  2015)

Before they can power your car, hydrogen fuel cells need an efficiency boost. Pacific Northwest National Laboratory scientists Dr. Wendy Shaw and Dr. Monte Helm led an invitation-only workshop at the Telluride Science Research Center on hydrogenase mimics, which catalyze hydrogen production and use for fuel cells.



American Chemical Society video opening screen

The Story Behind ACS Winners Daniel DuBois, Morris Bullock, and the Hydrogen Catalysis Team

Interview with Chris Jones, Editor-in-Chief of ACS Catalysis, shows what it takes to control protons

(August  2015)

Congratulations to the Hydrogen Catalysis Team at Pacific Northwest National Laboratory on receiving the 2015 ACS Catalysis Lectureship for the Advancement of Catalytic Science. Check out the video interview with Chris Jones, an American Chemical Society Editor-in-Chief, to learn what it took for the team to elucidate the design rules of one of the decade's great catalysis breakthroughs.



Drop cast of catalyst

No Catalyst Is an Island

Once thought unimportant, a supporting film actually speeds or derails electricity production

(June  2015)

Quickly, reliably turning wind energy into fuel means looking beyond the catalyst to its foundation, according to a study from the Center for Molecular Electrocatalysis, headquartered at Pacific Northwest National Lab. The team discovered that the catalyst's support has as much of an impact as the catalyst structure itself because the technique used to place the support changes the mesoscale environment.



Monte Helm

Monte Helm Advises Next Generation of Innovators

(March  2015)

Catalysis scientist Monte Helm joined national lab colleagues to fill grad students and postdocs in on what it takes to get into a national lab and what it takes to stay. He took part in two webinars hosted by the Center for Sustainable Materials Chemistry in February and March. The CSMC is a Center for Chemical Innovation sponsored by the NSF offering student and professional development opportunities and programs to train the next generation of innovators.



Zdenek Dohnalek at scanning tunneling microscope

Transformations: The Value of Catalysis, Top Five List from CME's Last Five Years, Catalytic Choreography

(February  2015)

The Institute for Integrated Catalysis' Transformations contains an overview on the value of catalysis to the economy, society, and scientific research. This issue's feature is on the first five years of the Center for Molecular Electrocatalysis at PNNL. Don't miss the latest video, "Catalytic Choreography." Zdenek Dohnalek (see photo) explains how his team discovers how molecules move, break and rejoin on the surface of a catalyst--fundamental knowledge for designing better catalysts to produce renewable energy.



Hydrogen molecules

Catalysis Team Wins Prestigious National Lectureship

(February  2015)

Congratulations to the Hydrogen Catalysis Team at Pacific Northwest National Laboratory on winning the 2015 ACS Catalysis Lectureship for the Advancement of Catalytic Science. The team earned the award for research that has revolutionized understanding of the role of proton movement in the electrocatalytic interconversion of electricity and hydrogen fuel.

This is the first team win for the lectureship. The members are Morris Bullock, Daniel DuBois, Monte Helm, Michel Dupuis, Simone Raugei, Jenny Yang, John Roberts, Molly O'Hagan, Wendy Shaw, Aaron Appel, and Eric Wiedner at PNNL, and Sharon Hammes-Schiffer at University of Illinois. The team is part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the DOE Office of Science's Basic Energy Sciences.



Center for Molecular Electrocatalysis

Resources

Subscribe

RSS RSS Feeds
Office of Science

RSS RSS Feed
PNNL EFRC

CME Twitter Feed

Our Mission

Develop a comprehensive understanding of molecular electrocatalysts that efficiently convert electrical energy into chemical bonds in fuels, or the reverse, convert chemical energy from fuels into electrical energy. To learn more about the Energy Frontier Research Centers, visit the Department of Energy's EFRC website.

Share

  • YouTube Facebook Flickr TwitThis LinkedIn

Contacts