Skip to Main Content U.S. Department of Energy
Center for Molecular Electrocatalysis - Energy Frontiers Research Center

Tackling Our Energy Challenges in a New Era of Science

Latest Announcements

Morris Bullock Quoted in Prestigious Scientific Journal

(August  2014)

Morris Bullock
Morris Bullock was quoted in the August 8, 2014, issue of the Science.

In the August 8 issue of Science, Dr. Morris Bullock at Pacific Northwest National Laboratory is quoted as an outside expert on a new ammonia production method. In the article titled "New Recipe Produces Ammonia from Air, Water, and Sunlight," writer Robert Service covers work at George Washington University that uses a molten mixture of sodium hydroxide and potassium to synthesize ammonia. Bullock is quoted about the significance of the research.

At the national laboratory, Bullock leads the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. He is a Fellow of the Royal Society of Chemistry and American Chemical Society. His work in developing transition metal electrocatalysts earned him the Royal Society of Chemistry's Homogeneous Catalysis Award in 2013.



The need for pushing back the energy frontiers

Frontiers in Energy Research Celebrates EFRCs

Check out the latest newsletter issue

(August  2014)

Check out the current issue of Frontiers in Energy Research and celebrate the outstanding work done at DOE’s Energy Frontier Research Centers. Ryan Stolley from the Center for Molecular Electrocatalysis, led by Pacific Northwest National Laboratory, penned the theme article on what it takes to build collaboration at an EFRC and why having younger people on your team is critical. Stolley also wrote about scientists at Light-Material Interactions in Energy Conversion building devices that take in light across the spectrum, potentially making solar cells more efficient. You can learn about the work being done at different centers, how researchers are finding new ways to talk about science and recent awards.

You can see the entire newsletter at http://www.energyfrontier.us/newsletter.

You can sign up on the lower right corner to get the next issue in your inbox.



Proton binding locations

Building the Ideal Rest Stop for Protons

Determining preferences provides insight into molybdenum complex's ability to produce ammonia precursor

(July  2014)

Where protons decide to rest makes the difference between proceeding toward ammonia production or not, according to scientists at Pacific Northwest National Laboratory and Villanova University. The team found that subtle differences in complexes with metal centers greatly change where the protons end up.



Sharon Hammes-Schiffer

Sharon Hammes-Schiffer Elected International Academy of Quantum Molecular Science Member

(July  2014)

Congratulations to Prof. Sharon Hammes-Schiffer, Center for Molecular Electrocatalysis, on being selected as a member of the International Academy of Quantum Molecular Science. A world leader in theoretical and computational chemistry, Hammes-Schiffer created a general theoretical formulation for proton-coupled electron transfer reactions that elucidates how protons behave in reactions. She conducts her work as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by DOE's Office of Basic Energy Sciences, and in her group at the University of Illinois at Urbana-Champaign, where she is the Swanlund Professor of Chemistry.



Electromolecular Catalysis Overpotential

Researchers Propose a Common Yardstick to the Efficiency of Molecular Electrocatalysts

Finding a consistent and accurate overpotential description to compare catalytic performance

(June  2014)

In an invited ACS Catalysis Viewpoint paper, scientists at Pacific Northwest National Laboratory proposed a way to measure and report the energy efficiency of molecular electrocatalysts, small molecules that quickly convert electrical energy into chemical bonds or break those bonds to release energy. The definition and process they propose is designed to clear up inconsistencies in describing and reporting overpotential, a measure of the catalyst's efficiency. By adhering to a set of uniform procedures and metrics, researchers can consistently compare one catalyst to another.



Sharon Hammes-Schiffer Elected to the National Academy of Sciences

(May 2013)

Sharon Hammes-Schiffer

Congratulations to Prof. Sharon Hammes-Schiffer, Center for Molecular Electrocatalysis, on being selected as a member of the National Academy of Sciences. A world leader in theoretical and computational chemistry, Hammes-Schiffer studies proton-coupled electron transfer reactions at the Energy Frontier Research Center, funded by DOE's Office of Basic Energy Sciences. She is the Swanlund Professor of Chemistry at the University of Illinois at Urbana-Champaign.

Established 150 years ago by President Abraham Lincoln, the National Academy of Sciences is an official adviser to our nation's government, upon request, in any matter of science or engineering. This prestigious organization furthers science through the election of its members and through original research in the Proceedings of the National Academy of Sciences.


Would You Hire This Catalyst?

(May 2013)

Would you hire this Catalyst

Given two catalysts for the job of turning intermittent wind or solar energy into chemical fuels, scientists chose the material that gets the job done quickly and uses the least energy. A catalyst that quickly produces fuel but uses far more energy than it stores won't get the job. Scientists could measure the overpotential in water but not in other liquids, until Dr. Morris Bullock and Dr. John Roberts devised a quick, elegant technique. This work was done at the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by DOE's Basic Energy Sciences.


Controlling Proton Source Speeds Catalyst in Turning Electricity into Fuels

(April 2013)

April JACS cover

Scientists at the Center for Molecular Electrocatalysis demonstrated that matching the proton source's pKa to that of a nickel-based catalyst speeds the conversion of electricity to hydrogen bonds dramatically. Turning electricity into chemical bonds and vice versa is necessary to capture intermittent renewable energy as use-any-time fuel. The Center is an Energy Frontier Research Center, funded by DOE's Office of Basic Energy Sciences, and is led by Pacific Northwest National Laboratory.



Transformations Presents Catalysis and Sustainable Energy

(March 2013)

March Transformations Newsletter

The latest issue of Transformations shows the role of catalysts in making wind, solar and other sustainable energy sources a major part of the nation's energy landscape. Dr. Dan DuBois, Deputy Director of the Center for Molecular Electrocatalysis, shares the three principles involved in creating electrocatalysts, which drive the interconversion of electricity to energy stored in chemical bonds. Learn about this research and much more at the American Chemical Society symposium being held in his honor. Applied and fundamental scientists talk about the power of theory or computational chemistry to break chemistry bottlenecks and settle basic energy questions. Don't miss the latest video – featuring the Center's Dr. Monte Helm and Dr. Morris Bullock.



Chemical Society Symposium to Honor Catalysis Research of Dan DuBois

(March 2013)

Dan DuBois

Given his scientific successes and caring personality, the opportunities to speak at the 1.5-day symposium honoring the career of Dr. Dan DuBois, Pacific Northwest National Laboratory, filled quickly. The event honors DuBois American Chemical Society's Award in Inorganic Chemistry. Dr. Aaron Appel and Dr. Monte Helm at Pacific Northwest National Laboratory, along with Dr. Jenny Yang at the Joint Center for Artificial Photosynthesis, organized the symposium.



Synthetic Molecule First Electricity-Making Catalyst to Use Iron to Split Hydrogen Gas

(February 2013)

speed

Scientists at Center for Molecular Electrocatalysis based at Pacific Northwest National Laboratory developed a fast and efficient iron-based catalyst that splits hydrogen gas to make electricity -- necessary to make fuel cells more economical.



Adding Natural Elements to Synthetic Catalysts Speeds Hydrogen Production

(February 2013)

speed

By grafting features analogous to those in Mother Nature's catalysts onto a synthetic catalyst, scientists created a hydrogen production catalyst that is 40% faster than the unmodified catalyst. This study provides foundational information that could, one day, help design and synthesize the catalysts for hydrogen production for fuels, long-lasting electric car batteries, and energy storage from solar and wind farms.



Proton Delivery and Removal Can Speed or Distract Common Catalyst

(February 2013)

speed

Proton delivery and removal determines if a well-studied catalyst takes its highly productive form or twists into a less useful structure, according to scientists at the Center for Molecular Electrocatalysis, an Energy Frontier Research Center based at Pacific Northwest National Laboratory. The catalyst takes two protons and forms molecular hydrogen, or it can split the hydrogen. The team showed that the most productive isomer, endo/endo, has the key nitrogen-hydrogen bonds pushed close to the nickel center. If the catalyst is in the endo/endo form, the reaction occurs in a fraction of a second. If the catalyst is stuck in another form, the reaction takes days to complete.


A Pathway for Protons

(January 2013)

Pathway for Protons

Moving four relatively large protons to where they are needed is easier if you build a path, as is being done by scientists at the Center for Molecular Electrocatalysis. The research team has built two iron-based compounds that help protons move from the exterior to where they are needed. Once delivered, the protons bond with molecular oxygen and create water. In previous compounds, the protons often don't arrive in time or go to the wrong place, which leads to forming the unwanted byproduct hydrogen peroxide. The new compounds direct the protons in ways that help separate the two oxygen atoms in O2, and thereby drive the reaction to completion.


Center for Molecular Electrocatalysis

Resources

Subscribe

RSS RSS Feeds
Office of Science

RSS RSS Feed
PNNL EFRC

CME Twitter Feed

Our Mission

Develop a comprehensive understanding of molecular electrocatalysts that efficiently convert electrical energy into chemical bonds in fuels, or the reverse, convert chemical energy from fuels into electrical energy. To learn more about the Energy Frontier Research Centers, visit the Department of Energy's EFRC website.

Share

  • YouTube Facebook Flickr TwitThis LinkedIn

Contacts